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1 Notation

2 Vector Multiplication

Let u =


u1

u2

...
um

 be a column vector, and v⊤ =
[
v1 v2 · · · vn

]
be a row

vector.
The outer product of u and v is given by:

uv⊤ =


u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn
...

...
. . .

...
umv1 umv2 · · · umvn

 (1)
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3 Matrix Multiplication

Let’s consider two matrices A and B with dimensions m× n and n× p:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



B =


b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bn1 bn2 · · · bnp


The matrix multiplication C = A ·B is given by:

C =


c11 c12 · · · c1p
c21 c22 · · · c2p
...

...
. . .

...
cm1 cm2 · · · cmp


where each element cij is computed as:

cij = ai1 · b1j + ai2 · b2j + · · ·+ ain · bnj (2)

So, for example, the element at position (i, j) in the result matrix C is cij .

4 Gradient of a Scalar With Respect to a Vector

Let f(x) be a scalar function where

x =


x1

x2

...
xn


The gradient of f(x) with respect to x, denoted as ∇f(x), is given by:

∇f(x) =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn

 (3)

Each element of the gradient vector is the partial derivative of f with respect
to the corresponding variable.

[∇f(x)]i =
∂f

∂xi
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5 The Jacobian Matrix

Let f(x) =


f1(x)
f2(x)

...
fm(x)

 be a vector-valued function where x =


x1

x2

...
xn

.
The Jacobian matrix J(f ,x) is given by:

J(f ,x) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 (4)

The element in the i-th row and j-th column of the Jacobian matrix is:

[J(f ,x)]i,j =
∂fi
∂xj

Note that the Jacobian is a m× n matrix.

6 Jacobian Example I

The given vector derivative rule is a product rule for the gradient of a scalar
function f(x) times a vector function g(x). The rule is stated as:

∇x(f(x)g(x)) = f(x)∇xg(x) + g(x) (∇xf(x))
⊤

6.1 Proof

Let f(x) be a scalar function and g(x) be a vector function, where x is a vector
of variables. We assume that x is of dimension n× 1 and g(x) is of dimension
m× 1. Now, let’s identify the dimensions of each components in the R.H.S:

x : n× 1

f(x) : 1× 1

∇xg(x) : m× n

g(x) : m× 1

(∇xf(x))
⊤
: 1× n

We can arrive at the proof step by step using the definition of the gradient
and the product rule.
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The gradient of f(x) is given by Eq. 3:

∇xf(x) =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn


Now, let’s consider the product f(x)g(x):

f(x)g(x) =


f(x)g1(x)
f(x)g2(x)

...
f(x)gm(x)


where gi(x) represents the i-th component of the vector function g(x).
Now, let’s compute the gradient of this product:

∇x(f(x)g(x)) =


∂f(x)g1(x)

∂x1

∂f(x)g1(x)
∂x2

· · · ∂f(x)g1(x)
∂xn

∂f(x)g2(x)
∂x1

∂f(x)g2(x)
∂x2

· · · ∂f(x)g2(x)
∂xn

...
...

. . .
...

∂f(x)gm(x)
∂x1

∂f(x)gm(x)
∂x2

· · · ∂f(x)gm(x)
∂xn

 Using Jacobian definition in Eq. 4

Now, apply the product rule to each component in this Jacobian:

[∇x(f(x)g(x))]i,j =
∂

∂xj
(f(x)gi(x)) = f(x)

∂gi
∂xj

+
∂f

∂xj
gi(x) (Product Rule)

Now that we have a general rule for each element in the resultant matrix,
let’s derive a unified form for a single row:

[∇x(f(x)g(x))]i,: = f(x)(∇xgi(x))
⊤ + gi(x) (∇xf(x))

⊤

Please note that the transpose operation is applied in the above context
because, in our notations, the derivative of a scalar with respect to a vector
results in a column vector. However, the expression we are dealing with is
seeking a row vector representation.

Finally, using Eq. 1 and 4, we can arrive at the general rule:

∇x(f(x)g(x)) = f(x)∇xg(x) + g(x) (∇xf(x))
⊤
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7 Jacobian Example II

Show that

∇xg(h(x)) = ∇rg(r)∇xh(x)

∣∣∣∣∣
r=h(x)

.

Note that in the above x is n× 1, h is p× 1 and g is m× 1. Then ∇xh(x)
is p× n and ∇rg(r) is m× p.

7.1 Proof

To prove the given expression for the element-wise gradients, we can use the
chain rule of calculus. Let’s denote the elements of vectors x, h(x), and j as xi,
hi(x), and ji respectively.

∇xg(h(x)) =


∂g1(h(x))

∂x1

∂g1(h(x))
∂x2

· · · ∂g1(h(x))
∂xn

∂g2(h(x))
∂x1

∂g2(h(x))
∂x2

· · · ∂g2(h(x))
∂xn

...
...

. . .
...

∂gm(h(x))
∂x1

∂gm(h(x))
∂x2

· · · ∂gm(h(x))
∂xn

 Using Jacobian definition in Eq. 4

Now, consider the i, j-th element of the expression:

[∇xg(h(x))]i,j =
∂gi(h(x))

∂xj
=

p∑
k=1

∂gi(r)

∂rk

∂h(x)k
∂xj

∣∣∣∣∣
r=h(x)

Chain rule

Remember that the kth component of h(x) depends on xj . Hence, we need
to account for the partial derivative from every element of h(x)

∇xh(x) = J(h,x) =


∂h1

∂x1

∂h1

∂x2
· · · ∂h1

∂xn
∂h2

∂x1

∂h2

∂x2
· · · ∂h2

∂xn

...
...

. . .
...

∂hp

∂x1

∂hp

∂x2
· · · ∂hp

∂xn

 (5)

∇rg(r)

∣∣∣∣∣
r=h(x)

= J(g, r) =


∂g1
∂r1

∂g1
∂r2

· · · ∂g1
∂rp

∂g2
∂r1

∂g2
∂r2

· · · ∂g2
∂rp

...
...

. . .
...

∂gm
∂r1

∂gm
∂r2

· · · ∂gm
∂rp

 (6)

Using Eq. 5 and 6, we get:

∇xg(h(x)) = ∇rg(r)∇xh(x)

∣∣∣∣∣
r=h(x)

.

Verify that the matrix multiplication of 5 and 6 can give the expression of
each individual element we showed earlier using the chain rule.
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8 References

• Matrices eClass Wiki

• Derviatives eClass Wiki

• Matrix cookbook

• Jacobian Wiki

• Chain rule from Khan Academy
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